

线粒体 H+- ATP 酶活性测定说明书

(货号: BP10486W 微板法 48样 有效期: 3个月)

一、指标介绍:

线粒体是细胞呼吸代谢的重要场所,位于线粒体内膜的 H^+ -ATP 酶是氧化磷酸化偶联的关键组分。 H^+ -ATP 酶可催化 ATP 水解生成 ADP 和无机磷,本试剂盒通过测定无机磷的量来确定该酶活性高低。

二、试剂盒的组成和配制:

试剂组分	试剂规格	存放温度	注意事项
提取液 1	提取液 60mL×1 瓶	4℃保存	
提取液 2	提取液 15mL×1 瓶	4℃保存	
试剂一	液体 17mL×1 瓶	4℃保存	
试剂二	粉剂 1 瓶	4℃保存	1. 开盖前注意使粉体落入底部(可 手动甩一甩); 2. 加入 2.5mL 蒸馏水,混匀溶解备 用; 3. 保存周期与试剂盒有效期相同。
试剂三	液体 3mL×1 瓶	4℃避光保存	
试剂四	粉剂 1 瓶	4℃保存	1. 开盖前注意使粉体落入底部(可 手动甩一甩); 2. 加入 2.5mL 蒸馏水,混匀溶解备 用; 3. 保存周期与试剂盒有效期相同。
试剂五	粉剂 1 支	-20℃保存	1. 临用前 8000g 4°C 离心 2mim 使试剂落入管底; 2. 加入 0.7mL 蒸馏水,混匀溶解备用; 3. 保存周期与试剂盒有效期相同。
试剂六	液体 5mL×1 瓶	4℃保存	
试剂七	A:粉体 1 瓶 B:液体 3mL×1 瓶	4℃避光保存	1. 临用前加 2.06mL 的 B 液,再加 15.94mL 的蒸馏水,混匀溶解备用; 2. 需避光,现配现用,变蓝色不能使用。
标准品	粉体 1 支	4℃保存	 若重新做标曲,则用到该试剂; 按照说明书中标曲制作步骤进行配制; 溶解后的标品一周内用完。

【注】: 全程操作需无磷环境; 试剂配置最好用新的枪头和玻璃移液器等, 也可以用一次性塑料器皿, 避免磷污染。 三、实验器材:

研钵(匀浆机)、冰盒(制冰机)、台式离心机、可调式移液枪、水浴锅(烘箱、培养箱、金属浴)、 96 孔板、离心管、酶标仪、蒸馏水(去离子水、超纯水均可)。

四、指标测定:

建议先选取 1-3 个差异大的样本(例如不同类型或分组)进行预实验,熟悉操作流程,根据预实验

结果确定或调整样本浓度,以防造成样本或试剂不必要的浪费!

- 1、线粒体制备(提示:整个线粒体的提取过程须保持 4℃低温环境):
- ① 称取约 0.2g 组织或收集 1000 万细菌/细胞,加入 1mL 提取液 1,用冰浴匀浆器或研钵冰浴匀浆,转移至离心管后于 $4^{\circ}C \times 3000g$ 离心 20min。
- ② 小心吸取上清液 (弃沉淀) 移至另一离心管中, 4°C×16000g 离心 20min。用移液器移除上清液 (上清液即为除去线粒体的胞浆蛋白,可用于测定从线粒体泄漏的 H+- ATP 酶 (此步可选做))。留下沉淀 (沉淀即为线粒体)。
- ③ 在沉淀(线粒体)中加入 200μ L 提取液 2,超声波破碎(冰浴,功率 20%或 200W,超声 5s,间隔 3s,重复 30 次),液体置于冰上用于线粒体 H+- ATP 酶活性测定。
 - 【注】:若增加样本量,可按照组织质量(g):提取液体积(mL)为 1: $5\sim10$ 的比例进行提取,或按照细菌/细胞数量 (10^4) :提取液 (mL) 为 $500\sim1000$:1 的比例进行提取。

2、检测步骤:

① 酶标仪预热 30min 以 所有试剂解冻至室温

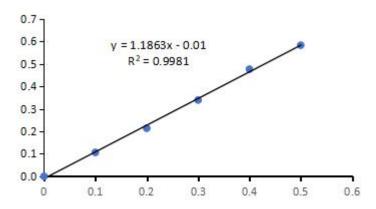
- ② 所有试剂解冻至室
- ③ 在EP管中依次加入:

试剂组分(μL)	测定管	对照管	
试剂一	140	150	
试剂二	20	20	
试剂三	30	30	
试剂四	20	20	
样本	40	40	
混匀,静置 5min			
试剂五	10		
混匀,37°C孵育 20min			
试剂六	50	50	
混匀, 12000rpm,	4℃离心 5mii	1,上清液待测	

上,调节波长至 740nm, (25℃)。

温 (25°C)。

④ 显色反应(在96孔板中操作):


上清液	100	100		
试剂七	150	150		

混匀, 室温静置 15min, 740nm 下读取各管吸光值, △A=A 测定-A 对照(每个样本做一个自身对照)。

五、结果计算:

1、标准曲线方程: y = 1.1863x-0.01, x 是标准品摩尔质量($\mu mol/mL$), y 是 ΔA 。

2、按蛋白浓度计算:

定义:每小时每毫克组织蛋白分解 ATP 产生 1μ mol 无机磷的量为一个酶活力单位。 酶活力(μ mol/h/mg prot)= $[(\Delta A+0.01)\div 1.1863\times V2]\div (V1\times Cpr)\div T$ = $19.6\times(\Delta A+0.01)\div Cpr$

3、按样本鲜重计算:

定义:每小时每克组织分解 ATP 产生 1μ mol 无机磷的量为一个酶活力单位。 酶活力(μ mol/h/g 鲜重)=[(Δ A+0.01)÷1.1863×V2]÷(W× V1÷V)÷T =19.6×(Δ A+0.01)÷W

4、按细菌或细胞密度计算:

定义:每小时每 1 万个细菌或细胞分解 ATP 产生 1 μ mol 无机磷的量为一个酶活力单位。酶活力(μ mol/h /10⁴ cell)= [(Δ A+0.01)÷1.1863×V2]÷(500×V1÷V)÷T=0.039×(Δ A+0.01)

5、液体中酶活力计算:

定义:每小时每毫升液体分解 ATP 产生 1μ mol 无机磷的量为一个酶活力单位。酶活力 $(\mu$ mol/h/mL) =[(Δ A+0.01)÷1.1863×V2]÷V1÷T=19.6×(Δ A+0.01)

V---加入提取液体积, 1mL; V1---加入样本体积, 0.04mL;

V2---酶促反应总体积. 0.31mL; T---反应时间. 1/3 小时;

W---样本鲜重, g; 500---细菌或细胞总数, 500 万;

Cpr---样本蛋白质浓度,mg/mL;建议使用本公司的蛋白含量检测试剂盒。

附:标准曲线制作过程:

- 1 标准品用 1mL 蒸馏水溶解。(母液需在两天内用),标准品母液浓度为 50μmol/mL。将母液用蒸馏水稀释成六个浓度梯度的标准品,例如:0, 0.1, 0.2, 0.3, 0.4, 0.5μmol/mL。也可根据实际样本调整标准品浓度。
- 2 标品稀释参照表如下:

1. 吸取标准品母液 100uL,加入 900uL 蒸馏水,混匀得到 5μmol/mL 的标品稀释液; 2. 吸取 5μmol/mL 的标品稀释液 100uL,加入 900uL 蒸馏水,混匀得到 0.5μmol/mL 的标品稀释液待用。

100	E 3 13 EE EE 11	, , , , , , , , , , , , , , , , , , , ,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
标品浓度 μmol/mL	0	0.1	0.2	0.3	0.4	0.5
标品稀释液 uL	0	40	80	120	160	200
水 uL	200	160	120	80	40	0
各标准管混匀待用。						

3 依据显色反应阶段测定管的加样表操作,根据结果,以各浓度吸光值减去 0 浓度吸光值,过 0 点制作标准曲线。

-	-X °				
	试剂名称(μL)	标准管	0 浓度管(仅做一次)		
	标品	100			
	蒸馏水		100		
	试剂七	150	150		
	混匀,室温静置 15min,740nm 下读取各管吸光值,				